<u>Mit *y*-Emittern markierte Steroide -</u> Ester des Östradiols und Cholestenols mit ^{[103}Ru]-Ruthenocencarbonsäure

K. Hoffmann, B. Rießelmann, M. Wenzel

Isotopen-Abteilung des Pharmazeutischen Instituts der Freien Universität, Königin-Luise-Str. 2/4, 1 Berlin 33 (Deutschland)

Summary

Radioactive esters of estradiol and cholestenol with ruthenocenecarboxylic acid were prepared . In case of the estradiol esters there had been exchange of Fe in the corresponding ferrocene compounds with ¹⁰³RuCl₃ resulting in poor yield only. Good radiochemical yields were obtained by exchanging ¹⁰³Ru for Fe in (2-chlorobenzoyl)ferrocene and synthesis of the esters by reaction of estradiol with ^{[103}Ru] ruthenocenecarboxylic acid chloride generated from (2-chlorobenzoyl)ruthenocene. High specific activities of estradiol esters for biochemical studies were achieved after separation of the ferrocene and ruthenocene esters by HPLC.

Einleitung

Die Markierung von biochemisch interessanten Verbindungen wie Östradiol- und Cholestenol-Estern mit extern meßbaren p-Strah-

Received April 26, 1979

lern ist für die Entwicklung von Radiopharmaka zur nuklearmedizinischen Diagnostik von Interesse ¹⁾.

Ester der Ruthenocencarbonsäure lassen sich am einfachsten durch thermischen Austausch des Zentralatoms der entsprechenden Ferrocen-Verbindung mit 103 RuCl₃ synthetisieren $^{2,3,4)}$. Diese Einstufenreaktion verläuft nach folgendem Schema:

$$C_{5}H_{5}FeC_{5}H_{4}-C-OR+\frac{103}{N}RuC1_{3} \xrightarrow{\Delta} C_{5}H_{5}H_{5}C_{5}H_{4}-C-OR+FeC1_{3}$$

Da dieser Weg bei den Östradiol-Estern nur zu unbefriedigenden radiochemischen Ausbeuten von maximal 0.1-0.5% führte, wurde zunächst [103Ru]-o-Chlorbenzoylruthenocen synthetisiert und daraus Ruthenocencarbonsäurechlorid hergestellt, das mit den Steroid-Alkoholen verestert wurde.

Bei dem Austausch des Zentralatoms wird das Ferrocen-Derivat in deutlichem Überschuß eingesetzt (Mol-Verhältnis Fe:¹⁰³Ru ca. 20-100:1). Somit wird das radioaktive Ruthenocen-Produkt durch die inaktive Ferrocen-Verbindung verdünnt. Für biochemische Untersuchungen der Östradiol-Ester¹⁾ wird jedoch eine hohe spezifische Aktivität angestrebt. Aus diesem Grund wurde der bei der indirekten Synthese mitgebildete Ferrocencarbonsäureester durch HPLC abgetrennt.

Ergebnisse

Der einfachste Weg zu radioaktiven Estern der Ruthenocencarbonsäure ist der direkte Austausch des Zentralatoms in den enfsprechenden Ferrocencarbonsäureestern mit 103 RuCl₃. Dieser Weg führte beim $[{}^{103}$ Ru]3-cholestenol-ruthenocencarboxylat zu gerade noch befriedigenden radiochemischen Ausbeuten von 4.5 %, nicht jedoch bei dem gewünschten $[{}^{103}$ Ru]3- bzw. 17-Östradiol-ruthenocencarboxylat. Auch der Einsatz von Al₂O₃ als Träger für 103 RuCl₃ ⁴) führte hier entgegen den Ergebnissen mit Ferrocencarbonsäure-methylester zur vollständigen Zersetzung der eingesetzten Ester unter teilweiser Bildung von 103 Ru -Ruthenocen. Im Falle der Östradiol-Ester waren wir daher gezwungen, einen indirekten Syntheseweg über eine besser durch Direktaustausch zu markierende Verbindung zu finden.

Die besten radiochemischen Ausbeuten bei der Austausch-Reaktion wurden mit Ferrocen erhalten; wegen der relativen Flüchtigkeit des $\begin{bmatrix} 103 \text{Ru} \end{bmatrix}$ Ruthenocen wurde aber der Syntheseweg nicht weiter verfolgt.

Bessere Resultate erhielt man durch intermediäre Synthese von $[^{103}\text{Ru}]$ -o-chlorbenzoylruthenocen, das in radiochemischen Ausbeuten von 44 % (neben 9 % $[^{103}\text{Ru}]$ Bis(o-chlorbenzoyl)ferrocen) erstmals erhalten wurde. Um bei der chemischen Reaktion nicht mit zu geringen Mengen arbeiten zu müssen, wurde die Abtrennung des Ferrocenanteils vom Ruthenocenanteil erst nach der Veresterung vorgenommen. Das Gemisch aus o-Chlorbenzoylferrocen und $[^{103}\text{Ru}]$ o-Chlorbenzoylruthenocen wurde nahezu quantitativ über die Carbonsäure $^{5)}$ (96.9 %) in das Säurechlorid $^{6)}$ (99 %)

umgewandelt, das ungereinigt mit Östradiol unter Zusatz von Silbercyanid ⁷⁾ zu 3- und 17-Östradiol-ruthenocencarboxylat verestert wurde. Durch Zugabe von 4-Dimethylaminopyridin ⁸⁾ (DMAP) anstelle von Silbercyanid wurde ausschließlich 3-Östradiol-ruthenocencarboxylat gewonnen; der Diester wurde unter den gewählten Bedingungen (Östradiol-Überschuß) nicht erhalten. Tabelle 1 faßt die Ausbeuten bei den verschiedenen Methoden zusammen. Mittels fraktionierter HPLC (Methanol/H₂O) gelang die Isolierung der ferrocenfreien Ruthenocencarbonsäureester in Ausbeuten von 6.9 % (3-Ester) und 37 % (17-Ester).

Experimentelles

Die Direktmarkierung (thermische Umsetzung der entsprechenden Ferrocenverbindung mit 103 RuCl₃) und Aufarbeitung der Reaktionsprodukte geschah nach bekannten Verfahren ${}^{3,4)}$. 2-Chlorbenzoylferrocen wurde nach ${}^{5)}$, die für die Austauschversuche und als Referenzsubstanzen benötigten Ester nach ${}^{9)}$ hergestellt.

Die Reinigung der Ferrocen-haltigen Produkte erfolgte über Dünnschichtchromatographie (Identifizierung über Co-Chromatographie), wobei die radioaktiven Zonen mit dem "Dünnschichtscanner" (Fa. Berthold) lokalisiert wurden. Die spezifische Aktivität [hier $/uCi^{103}Ru//umol$ Metallocenverbindung] konnte nach Messung der Aktivität und photometrischer Mengenbestimmung des Ferrocens berechnet werden. Die HPLC-Abtrennung des Ferrocenanteils bei den Östradiolestern erfolgte mit einem Chromatographen der Fa. Waters (präparative Säule /u-Bondapak C₁₈; mobile Phase: MeOH/H₂O 86:14; Durchflußgeschwindigkeit 4 ml/min, UV-Detektor 284 nm).

[¹⁰³Ru]3-Cholestenol-ruthenocencarboxylat

 $6_{\rm J}$ ug (10_Jumol) Cholestenol-ferrocencarboxylat wurden in einer Glasampulle mit einer acetonischen Lösung von 100_JuCi (0.95_Jumol) $\begin{bmatrix} 103 \\ Ru \end{bmatrix}$ RuCl₃ versetzt und im N₂-Strom eingedampft. Nach Evakuieren (2 min.) wurde die Ampulle abgeschmolzen und 1 h unter ständigem Drehen bei 200°C im Ölbad erhitzt. Weitere Aufarbeitung nach ⁴.

Radiochem. Ausbeute: 4.5/uCi = 4.5 % d. Th. theoret.spez.Aktivität: 9,1/uCi//umolgef. spez. Aktivität: 2,2/uCi//umolDC (Cyclohexan/Essigester 6:4): $R_f:0.67$

[¹⁰³Ru]o-Chlorbenzoylruthenocen (I)

217/uCi (2.5/umol) 103 Ru RuCl₃ in 200/ul Aceton wurden in einer Glasampulle mit 10/ug (30.8/umol) o-Chlorbenzoylferrocen im N₂-Strom eingedampft. Nach Evakuieren (2 min.) und Abschmelzen wurde 40 min. bei 180°C erhitzt. Anschließend wurde der Ampulleninhalt mit 6 ml CHCl₃ eluiert und durch DC (Benzol/Essigester 5:1) aufgetrennt. Neben 45.2/uCi (20.8 % d. eingesetzten Aktivität) [103 Ru]-Ruthenocen (R_f: 0.68) wurden 95.5/uCi (44 % d. einges.Akt.) $[103_{Ru}]$ -o-Chlorbenzoylruthenocen I (R_f: 0.58) und 19.5/uCi (9 % d. eing. Akt.) 103_{Ru} Bis(o-Chlorbenzoyl)ferrocen (R_f: 0.47) isoliert mit CH₂Cl₂).

 $\begin{bmatrix} 103 \text{Ru} \end{bmatrix} \text{Ruthenocencarbonsäure} (II)$

1.71 g feingepulvertes, durch Evakuieren von Luft befreites K-tert.-butylat wurden unter N_2 in 5.2 ml absolutem Ethylenglykoldimethylether suspendiert und unter heftigem Rühren mit 0.1 ml H_2O versetzt. Zu 0.5 ml dieser Suspension in einem Miniatur-Schlenkrohr (5 x 1 cm) wurden unter heftigem Rühren 95.5/uCi I in 0.5 ml abs. Ethylenglykoldimethylether in N_2 -Gegenstrom zugetropft (erst Rot-, dann Gelbfärbung) und 5 h bei 80° C unter leichtem N_2 -Überdruck gerührt. Anschließend wurde mit 3 ml Eiswasser hydrolysiert und 3 x mit Ether unter Rühren extrahiert (Extrakt verworfen). Nach Ansäuern mit 0.3 ml HCl (36 %) wurde erneut 3 x mit je 3 ml Ether extrahiert. Nach Eindampfen wurden 92.5/uCi (96.9 % d. eingesetzt. Akt.) [103Ru]Ruthenocencarbonsäure II erhalten. DC in n-BuOII/H₂O/Eisessig (4:1:1); R_f: 0.73.

[103_{Ru}]Ruthenocencarbonsäurechlorid (III)

92.5/uCi II wurden mit 2 ml abs. Benzol, 250/ul PCl₃ und l Tropfen abs. Pyridin unter N₂ in einem Miniatur-Schlenkrohr versetzt und 3 h bei 65° C gerührt. Nach Abkühlen wurde die Lösung abpipettiert, der Rückstand 2 x mit abs. Benzol gewaschen und die vereinigten Benzol-Phasen am Rotationsverdampfer bei 40° C eingedampft. Anschließend wurde erneut 2 x mit je 10 ml abs. Benzol eingedampft und der Rückstand 30 min. an der Ölpumpe abgepumpt. Ausbeute: 91.6/uCi (99 % d. einges. Akt. = 42.2 % d. eingesetzt. 103 RuCl₃) $\begin{bmatrix} 103_{Ru} \end{bmatrix}$ Ruthenocencarbonsäurechlorid III.

Östradiol-Ester (Veresterung_mit_Silbercyanid)_

Zu 288.5 mg AgCN und 213.4 mg (780/umol) Östradiol wurden 20.5/uCi (0.24/umol) Säurechlorid III in 3 ml abs. Benzol unter N₂ zugetropft und 90 min. bei 76°C heftig gerührt. Es wurde 19 h bei Raumtemperatur weitergerührt, mit 2 ml H₂O hydrolysiert das Benzol in N₂-Strom abgedampft, 3 x mit je 3 ml CH₂Cl₂ und 3 x mit je 3 ml CHCl₃ extrahiert. Die vereinigten organischen Phasen wurden durch Zentrifugieren von mitpipettiertem AgCN befreit und eingedampft. Der Rückstand wurde durch DC (Benzol/Essigester 5:1) aufgetrennt und die Esterzonen mit CH₂Cl₂ eluiert. $\begin{bmatrix} 103 \text{Ru} \end{bmatrix}$ 3-Östradiol-ruthenocencarboxylat (IV) R_f: 0.24

[103Ru]17-Östradiol-ruthenocencarboxylat (V) R_f: 0.44 1.1/uCi (5.3 % d. einges. Carbonsäure)

Veresterung mit 4-Dimethylaminopyridin (DMAP)

32.7/uCi (0.38/umol) Säurechlorid III in 2 ml abs. CH_2Cl_2 wurden unter N₂ zu 10 mg (37/umol) Östradiol und 24 mg DMAP in 2 ml abs. CH_2Cl_2 zugetropft und 22 h bei Raumtemperatur gerührt, 1 x mit 4 ml 2 n HCl, 2 x mit 4 ml gesättigter NaHCO₃-Lösung gewaschen, die organische Phase durch DC (Benzol/Essigester 5:1) gereinigt und der 3-Ester mit CH_2Cl_2 extrahiert.

 $\begin{bmatrix} 103_{Ru} \end{bmatrix}$ 3-Östradiol-ruthenocencarboxylat(IV)R_f: 0.24

6.1,uCi (18.5 % d.einges. Carbonsäure).

HPLC-Trennung der Ferrocene- und Ruthenocenester des Östradiols

<u>17-Ester</u> 2.0/uCi V in 100/u CHCl₃ gespritzt. 17-Östradiol-ferrocencarboxylar R_f: 10.45 min. Fraktionen alle 10 Sek. von t=8 bis 13 min. Ferrocenfrei waren 37 % der eingespritzten, die spezifische Aktivität von [¹⁰³Ru]17-Östradiolruthenocencarboxylat (VII) betrug 66.0/uCi//umol.

Dank

Wir danken dem Bundesministerium für Forschung und Technologie für materialle Unterstützung.

Veresterung 18. mit DMAP 7.	Veresterung 3. mit AgCN 1.	Methode 3-
5% ^{a)} 8% ^{b)}	4% ^{a)} 4% ^{b)}	Ester
I	5.3% ^{a)} 2.2% ^{b)}	17-Ester
63 %	63 %	Carbonsäure zurück- gewonnen
50.0% ^{a)} 21.1% ^{b)}	9.2% ^{a)} 3.8% ^{b)}	3-Ester*)
1	14.3% ^{a)} 6.0% ^{b)}	17-Ester*)

*) Ausbeute (nach Abzug der zurückgewonnenen Carbonsäure)

a) % d. eingesetzten Carbonsäure

b) % d. eingesetzten $[103_{Ru}]_{RuC1_3}$

Literatur

- K. Hoffmann
 Naturwissenschaften 1979 im Druck
- E.A. Stadlbauer, E. Nipper, M. Wenzel
 J.Label.Compounds <u>13</u> (1977), 491
- M. Schneider, M. Wenzel, B. Riesselmann
 J.Label.Compounds <u>15</u> (1978), 295
- B. Riesselmann, M. Wenzel
 Hoppe-Seyler's Z. Physiol. Chem. <u>358</u> (1977), 1353
- E.R. Biehl, R.C. Reeves Synthesis <u>1973</u>, 360
- H. Falk, Ch. Krasa, K. Schlögl Monatshefte Chemie <u>100</u> (1969), 1552
- S. Takimoto, J. Inanaga, T. Katsuki, M. Yamagughi Bull.Chem.Sec.Jap. <u>19</u> (1976), 2335
- G. Höfle, E. Steflich Synthesis <u>1972</u>, 619
- 9) K. Hoffmann, B. Riesselmann, M. Wenzel Chem.Ber. (in Vorbereitung)